《倒数的认识》教学反思
作为一位刚到岗的人民教师,我们要有很强的课堂教学能力,教学的心得体会可以总结在教学反思中,如何把教学反思做到重点突出呢?下面是小编收集整理的《倒数的认识》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《倒数的认识》教学反思1在本节课的教学中,学生通过自学已经对倒数的意义有了初步的掌握。在引导过程中,学生很容易就归纳出倒数的意义,并能够自己举例子。学生在自学中对于特殊数“1”和“0”的倒数有些疑问,同学探究和交流,集体订正1的倒数是它本身,0则没有倒数!对于怎样求倒数的方法,通过练习检测,学生掌握的都非常好。这也说明学生已理解和清楚了倒数的意义。
对于这堂课的引导者,在教学中,身为一名数学教师,我的教学语言应该更加严谨。实施教学中应多给学生一些思维的空间,和发言的时间,作为年轻教师的我应该在教学中充分做到以学生为主,以学生的长远发展为切入点去充分的给予引导和点拨。同时,保证教学的良好实施又要求我在日后的备课中必须将教材研究透,并且还要从学生的思维去研究教法与学法。这样,才能做好学生数学学习中的良好引导,学生思维发展的初级阶段过程中正确的引路人。
《倒数的认识》教学反思2《倒数的认识》这节课是在学生学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。这一课时的内容主要是让学生理解倒数的意义和会求一个数的倒数,学生只有学好这部分知识,才能更好地位掌握后面的分数除法的计算和应用题打下坚实的基础。
记得朱永新说过:作为教师,关键是要给孩子自由,给他时间,给他空间。你给他一个舞台,他就能还给你一个精彩;你给他一点空间,他就能为你创造无数辉煌。
为了充分给孩子时间和空间,本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这样一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
通过教学,我感受到教师在教学中应相信学生的能力,并积极成为学生学习的合作者、帮助者和促进者,让学生大胆地去发现,去探索,去思考,去总结。
相信学生,他就会还给你一个意想不到的精彩!
《倒数的认识》教学反思3学情预设反思:
本课所学内容相对于学生来说,确实简单易懂,难度较低,大部分学生都基本掌握了相关知识,并能较好地完成各项习题。
课前学生掌握情况预知不够准确,所设计的教学课件与教学预案相对落后,较低地估计了学生对本课知识的掌握情况。
重难点突破反思:
本课的教学重点为:理解倒数的意义,掌握求一个数的倒数的方法。教学难点为:熟练地写出一个数的倒数。在本次课堂教学过程中,都一一解决,达到了教学预设目标。
教学过程总体反思:
虽说对学生掌握情况的预设不足,但课前的随机应变,使得本课的教学又出了“新彩”,将一堂新授课,变为预习成果汇报课,充分发挥了学生的积极主动性,引学生在课堂上畅所欲言,并在热烈的讨论中,识记知识点,强调重点,攻破难点。学生在这样的氛围中,感受到数学的学习是如此的轻松、有趣,课前的预习是如此的有成就,进而引得学生以更大的积极性,投入到数学的学习中来。我个人认为课堂教学做得比较成功。
总的来说,本节课的教学有得也有失,最大的失就是没有十分准确地预知学生的情况,此失很有可能成为以后教学的重大失误,所以,我一定吸取教训,避免此类事情再次发生。
《倒数的认识》教学反思4此次于老师来听课,我按照教学进度选择的内容是第四单元知识链接教材中《倒数的认识》一课,这一节课是在学生学习了分数乘法的基础上进行学习的,是为后面单元学习分数除法知识做准备。本节课的内容不多,首先是用两个数的乘积是1这样的几个算式来引出倒数的概念,然后是求一个数的倒数的方法。
本节课我的教学思路是:
第一大环节:利用课前三分钟的口算练习这一素材,可以按照乘积是否是1进行分组整理,再将乘积是1的一类进行二次分类,分成分数乘法与小数乘法,先从比较直观的分数乘法入手研究因数的特征,继而过渡到小数乘法算式中因数的特征,由发现到猜想再到举例验证,继而得出倒数的概念。
第二大环节,由如何求一个数的倒数入手?引导学生交流方法,并在练习中巩固求倒数的方法。
上完这节课,我的第一感觉是领着孩子绕着知识点走了一遍,用能力的孩子可能真的理解了倒数的意义,而大部分的孩子可能只是学会了求倒数的方法,至于是否真正理解了倒数的意义,还处于模棱两可的状态。结合着于老师的点评,再回头看我这节课的设计流程,还真是存在着很大的问题:
一、概念上存在偏差
本节课在研究分数乘法这组算式的特征之后,我引导学生用“颠倒数”这样的一个词来反复描述两个分数的特征,而忽视了乘积是1的这一个大的背景。而如果从“为什么它们的乘积是1”这一个大问题入手,学生会顺藤摸瓜,思考它们因数之间存在的特殊关系。
正是因为本节课,我一直在强调分数的分子与分母相互颠倒这一点,造成学生没有真正从意义上理解倒数的意义,才会出现在+()=1这个加法算式中,有的学生填这一错误。
二、小步引领,走马观花
为了巩固求一个数的倒数,在练习这一环节我分四类设计并总结出:
(1)真分数的倒数都是大于1的假分数;
(2)大于1的假分数的倒数都是真分数;
(3)分数单位的倒数都是自然数;
(4)非零整数的倒数都是几分之一。
反过头来再看,真如于老师所说的那样,学生根本没有深刻的记忆,只是走马观花,但是如果按照于老师的建议,利用数轴的形式,在数轴上表示,我想即方便学生直观认识,也加深了学生的认识。
非常感谢于老师能在百忙之中来听评课,感谢于老师的指点,借着这次听课的东风,在教学路上且思且行!
《倒数的认识》教学反思5在课的导入部分,通过游戏激发学生的学习兴 ……此处隐藏6701个字……是所有的数都有倒数?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。
最后,大家一致认为”0“没有倒数。因为“0”不能做除数,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
《倒数的认识》教学反思14本节课是一节概念课,是陈述性知识,放在这个单元是起到了承上启下作用,是为了衔接分数乘法和分数除法计算法则。其目的就是为除以一个数等于乘这个数的倒数做铺垫,在这个问题上我一直认为:为什么要乘这个数的倒数这个问题要说清楚,否则分数除法的计算法则不好理解。
教学从寻找乘积是1的两个分数开始。在给出的8个分数中,学生能够找到三对乘积是1的分数。这项貌似游戏的活动凸显了“倒数”是乘积为1的两个数之间的关系,这正是建立倒数概念必须充分注意的内涵。教材在三对乘积是1的分数基础上,指出“乘积是1的两个数互为倒数”。学生准确理解这句话的意思,不仅要知道互成“倒数”的两个数的乘积是1,还要明白两个数是“互为倒数”的。教材里三个卡通的交流,说的都是两个分数的乘积是1。下面的文字叙述强调两个数“互为倒数”,还以3/8和8/3为例,引导学生体会“甲数是乙数的倒数,乙数也是甲数的倒数”。
求已知数的倒数分三个层次教学:先求3/5、2/3等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。在第一个层次里,要求学生观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。第二个层次写出整数的倒数。可以从概念出发,寻找与这个整数相乘等于1的数。如果把整数看成分母是1的分数,就能像分数那样直接写出它的倒数。第三个层次理解0没有倒数,并要求作出相应的解释。这是因为0和任何数相乘的积都是0,不存在与0相乘能够得到1的数。
倒数的意义就是一句话:乘积是1的两个数互为倒数。但是对于这句话的理解是有着比较丰富的内涵的,这也就是概念内涵的体现。这节课的教学流程分为这样几个基本块面:首先通过例题7提出的问题——给出倒数的含义——分层突击理解倒数含义——出示形式上的经典错例(特别是小数的倒数)——处理1和0的问题(这是本节课的难点)。
本文所谈的不是教学流程上的问题,而是通过倒数这个概念,谈一谈对概念教学的理解,从拆句的角度,乘积是1的两个数互为倒数拆为:乘积是1、两个数、互为倒数。
针对倒数这个概念,我认为:内涵是指向正例的,外延是指向反例的。比如:书上出示乘积是1的正例,我们需要出示商、和、差是1的反例;书上说的是两个数互为倒数,没有出示3个数的反例。这两个反例是针对倒数概念本身的。
学生在倒数的答案呈现上,习惯于用等号表示“的倒数是”这样的错误,比如2=1/2,从数学表达式上说这是非常明显的错误,学生确实犯了,而且每届都有这样的情况,在今年的教学中我已经强调并且纠正了这样的错误,这说明教学方式对于不同学生是不一样的,学生本身的理解和态度的端正与否也是重要的问题,需要引起重视。
本节课需要重视的第二个问题就是1和0的问题,这两个问题实际上牵涉到其他的概念:假分数、整数、自然数。假分数分为1和大于1的假分数;整数和自然数里都有0,在这个问题上需要处理好,学生的理解需要通过不同的方式来体现。
单独的概念教学,或者说倒数概念本身不是一个很复杂的问题,有关倒数的知识主要包括两点:一点是倒数的意义,另一点是求倒数的方法。学生建立倒数的概念以后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。
相同的教学内容,几年的教学实践下来,发现:同样的教学内容,同样的知识点,为什么会出现这么大的差别?究其原因就是因为我们需要关注概念结构出现的次序,比如:整数的概念是复习、假分数的概念是辨析。
皮亚杰理论中认知发展的三个基本过程——同化、顺应、平衡,对于倒数概念来说,学生之前毫无经验,是属于顺应,其实顺应更类似一个质变的过程,有对于知识结构的扩展和修正,会形成一个新的认知图式。
但是本节课的教学难度不大,原因是这个知识点本身是不难的,从形式到本质,需要考虑的问题主要就是0,所以我在教学的时候特别关注了数字0的问题,然后在书本上39页第19题的处理上特别强调了数字1的问题。
从整个概念系统来说,同化和顺应是相互依存的,如:本节课中倒数的概念是顺应,而用到的外围概念是整数、自然数、假分数,我在学习的时候注重对概念本身的解读,数包括自然数和整数,倒数的形式是分数,但不是分数的整数和小数需要先转化为最简分数之后再处理。
在概念的形式实现之后的环节就是对倒数概念的辨析,如:题目a都有倒数,这句话本身是有问题的,但是我们关注的点应该是a这个数的取值范围,是取正整数?负整数?0?非正整数?非负整数?自然数?这里都是学生需要考虑的问题,其实有没有倒数的核心概念就是:0没有倒数,但是对于具体的表现形式是我们需要花时间去思量的问题。
《倒数的认识》教学反思15在年级研究课里,我选择了《倒数的认识》一课来执教,教学倒数的认识后,我的感触很多。教材里这部分内容,是直接让学生计算结果是1的算式,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。我感到有一种牵着学生鼻子走的感觉。通过参考他人的教学,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过比赛的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我有给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数?使学生想到0的倒数问题。以前我是直接问学生0有倒数吗?好像暗示学生0没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,0有倒数,另一种是0没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为0没有倒数。因0不能做除数,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
这节课最大的缺点是时间分配得不够合理,有些环节用时太多,使后面的教学流于形式,匆忙结束,以后要注意这方面的问题,尽量把一节课上得更好。
文档为doc格式